Title: The Effect of Room-Temperature Aging on Enthalpy snd Dielectric Property of Carbon-Fiber/Epoxy Composite Prepreg and the Mechanical Property of Manufactured Composite
Authors: Monjur Morshed Rabby, Minhazur Rahman, Partha Pratim Das, Muthu Ram Prabhu Elenchezhian, Relebohile George Qhobosheane, Vamsee Vadlamudi, Kenneth Reifsnider, Rassel Raihan
DOI: 10.33599/nasampe/s.21.0483
Abstract: Fiber-based reinforced plastics are widely used materials in different industries - e.g., Automotive, Aerospace, Defense- because of their various advantages. The most reliable raw materials for manufacturing fiber-based composites are pre-impregnated reinforcing fiber (prepreg). However, the limitation of using prepreg lies in its instability at room temperature. Prepregs have a specific out-life which sometimes makes the manufacturing process difficult. The objective of this study is to find out a way to investigate the room temperature aging effect on prepreg by analyzing the enthalpy and dielectric properties. In this study, differential scanning calorimetry (DSC) was used to measure the reaction enthalpy in the aged prepreg. The dielectric property of aged prepreg has also been analyzed using broadband dielectric spectroscopy (BbDS). We observed a significant effect on the enthalpy and dielectric properties of the aged prepreg. Furthermore, this study concentrates on how the aging of prepreg can affect the mechanical properties of the final composite parts. This study shows that the manufactured composite from aged prepreg shows inconsistency and a slight reduction in its tensile strength. Finally, a manufacturing strategy is suggested that will minimize the inconsistency of the strength of the final composite part manufactured from aged prepreg.
References: [1] D.K. Rajak, D.D. Pagar, P.L. Menezes, E. Linul, Fiber-Reinforced Polymer Composites :, (n.d.). [2] R.-M. Wang, S.-R. Zheng, Y.-P. Zheng, Introduction to polymer matrix composites, Polym. Matrix Compos. Technol. (2011) 1–548. https://doi.org/10.1533/9780857092229.1. [3] D.B. Miracle, S.L. Donaldson, S.D. Henry, C. Moosbrugger, G.J. Anton, B.R. Sanders, N. Hrivnak, C. Terman, J. Kinson, K. Muldoon, ASM handbook Composites, 21 (2001) 3470. [4] R.W. Jones, Y. Ng, J.F. McClelland, Monitoring ambient-temperature aging of a carbon-fiber/epoxy composite prepreg with photoacoustic spectroscopy, Compos. Part A Appl. Sci. Manuf. 39 (2008) 965–971. https://doi.org/10.1016/j.compositesa.2008.03.015. [5] U.S. Terminal, U.S. Terminal, E. Route, E. Route, Repairs and Alterations to Composite and Bonded Aircraft Structure, 2005. [6] G.L. Hagnauer, D.A. Dunn, High Performance Liquid Chromatography. a Reliable Technique for Epoxy Resin Prepreg Analysis, Ind. Eng. Chem. Prod. Res. Dev. 21 (1982) 68–73. https://doi.org/10.1021/i300005a014. [7] K.C. Cole, D. Noël, J.-J. Hechler, A. Chouliotis, K.C. Overbury, Room temperature aging of Narmco 5208 carbon-epoxy prepreg. Part I: Physicochemical characterization, Polym. Compos. 10 (1989) 150–161. https://doi.org/10.1002/pc.750100303. [8] Y. Yu, H. Su, W. Gan, Effects of storage aging on the properties of epoxy prepregs, Ind. Eng. Chem. Res. 48 (2009) 4340–4345. https://doi.org/10.1021/ie8018005. [9] K.J. Ji, C.Y. Wei, W.H. Deng, Y.S. Zhang, Y.J. Liu, R.Z. Mao, X. Wang, Evaluation of Glass Fibre/Epoxy Prepreg Quality during Storage, Polym. Polym. Compos. 10 (2002) 599–606. https://doi.org/10.1177/096739110201000803. [10] L.K. Grunenfelder, S.R. Nutt, Prepreg age monitoring via differential scanning calorimetry, J. Reinf. Plast. Compos. 31 (2012) 295–302. https://doi.org/10.1177/0731684411431020. [11] M. Frigione, J.M. Kenny, Effects of storage aging on the cure kinetics of bismaleimide prepregs, Adv. Polym. Technol. 24 (2005) 253–265. https://doi.org/10.1002/adv.20048. [12] O. De Andrade Raponi, J. Everardo Baldo Junior, P. De Souza Leite, A. Carlos, A. Junior, A. Guimar~ Aes, Prepreg aging effects on its properties, curing process and final composite behavior characterized by dynamic mechanical analysis, (n.d.). https://doi.org/10.1177/0731684419845474. 13 [13] O. de A. Raponi, B.R. de Souza, J.E. Baldo Junior, A.C. Ancelotti Junior, A. Guimarães, Dielectric analysis as a low-complexity methodology for tracking prepreg out-time and its effects on the curing cycle, J. Compos. Mater. 53 (2019) 4035–4042. https://doi.org/10.1177/0021998319853325. [14] B. Van Mele, E. Verdonck, Physico-chemical characterisation of the influence of moisture on the fibre/matrix interaction in epoxy/anhydride composites, J. Adhes. 57 (1996) 245–260. https://doi.org/10.1080/00218469608013655. [15] J.P.M. de Silva Luis, Effect of out-time aging in composite prepreg material, (2014) 106. https://fenix.tecnico.ulisboa.pt/downloadFile/395146457930/dissertacao.pdf. [16] M. Akay, Effects of prepreg ageing and post-cure hygrothermal conditioning on the mechanical behaviour of carbon-fibre/epoxy laminates, Compos. Sci. Technol. 38 (1990) 359–370. https://doi.org/10.1016/0266-3538(90)90021-V. [17] ASTM, Astm D3039/D3039M, Annu. B. ASTM Stand. (2014) 1–13. https://doi.org/10.1520/D3039. [18] J.D. Menczel, L. Judovits, R.B. Prime, H.E. Bair, M. Reading, S. Swier, Differential Scanning Calorimetry (DSC), Therm. Anal. Polym. Fundam. Appl. (2008) 7–239. https://doi.org/10.1002/9780470423837.ch2. [19] C. Potter, T. Application, S. Sarah, R. Application, S. Fred, T. Manager, Materials Characterization by Thermal Analysis (DSC & TGA), Rheology, and Dynamic Mechanical Analysis (Part 2), (n.d.). [20] R. Raihan, J.M. Adkins, J. Baker, F. Rabbi, K. Reifsnider, Relationship of dielectric property change to composite material state degradation, Compos. Sci. Technol. 105 (2014) 160–165. https://doi.org/10.1016/j.compscitech.2014.09.017. [21] M.H. Habibi, Effects of out-time on cure kinetics and rheological properties of out-of-autoclave and autoclave prepregs, (2013). [22] Methyl phenyl sulfoxide - FTIR - Spectrum - SpectraBase. (n.d.). SpectraBase., (n.d.). https://spectrabase.com/spectrum/EcuxQjcnI4T. [23] J. Coates, Encyclopedia of Analytical Chemistry -Interpretation of Infrared Spectra, A Practical Approach, Encycl. Anal. Chem. (2004) 1–23. http://www3.uma.pt/jrodrigues/disciplinas/QINO-II/Teorica/IR.pdf. [24] M.G. González, J.C. Cabanelas, J. Baselga, Applications of FTIR on Epoxy Resins - Identification, Monitoring the Curing Process, Phase Separation and Water Uptake, Infrared Spectrosc. - Mater. Sci. Eng. Technol. (2012). https://doi.org/10.5772/36323. [25] A. Nandini, N. Shute, M.R.P. Elenchezhian, V. Vadlamudi, R. Raihan, K. Reifsnider, Dielectric property investigation of degraded pre-preg and performance prediction of the final composite part, Int. SAMPE Tech. Conf. 2018-May (2018). [26] Z. Ahmad, Polymeric Dielectric Materials, Intechopen. (2012). doi: 10.5772/50638. [27] F. Kremer, A. Schönhals, Broadband dielectric spectroscopy, (2003). 14 http://books.google.com/books?id=sdG4ywL3qMsC. [28] C. Zhang, D. Bell, M. Harger, P. Ren, Polarizable Multipole-Based Force Field for Aromatic Molecules and Nucleobases, J. Chem. Theory Comput. 13 (2017). https://doi.org/10.1021/acs.jctc.6b00918. [29] Solvay, Technical Data Sheet Cycom® 5320-1 Prepreg, (2020). https://www.niar.wichita.edu/NCAMPPortal/default.aspx.
Conference: SAMPE NEXUS 2021
Publication Date: 2021/06/29
SKU: TP21-0000000483
Pages: 16
Price: FREE
Get This Paper