Title: Revealing Polyurethane Properties Using Molecular Dynamics
Authors: Alexander Goldberg, Andrea R. Browning, Jacob L. Gavartin, Mohammad Atif Faiz Afzal, Benjamin J. Coscia, Mathew D. Halls
DOI: 10.33599/nasampe/s.21.0532
Abstract: Polyurethanes represent a versatile group of polymers with a diverse range of applications. Structural, thermophysical and mechanical properties of polyurethanes dependent on precursor chemistry and processing conditions, although details of this dependency are hard to quantify. Here we discuss how molecular simulations help to establish and rationalize structure-property relationships thus presenting an effective materials development tool that helps to guide experimental program and ultimately reduce the cost and time of the development cycle. We develop an iterative Molecular Dynamics (MD) that mimics polymerization reactions and generates realistic polymeric networks. We demonstrate how properties of polyurethane networks formed by different isocyanate and polyol precursors can be predicted. In particular, we consider thermophysical properties, such as density, glass transition temperature and gelation point. Calculations predict that the glass transition temperature of the polyurethanes based on different isocyanates precursors depends on pre-reacted molecular mixtures. The proposed approach is applicable to the broad range of polymerization reactions. It is implemented in Schrödinger Materials Science suite – an integrated environment for materials modelling accessible for modelers, chemists or materials scientists.
References: 1. [1] Afzal, M.A.F., Browning, A.R., Goldberg, A., Halls, M.D., Gavartin, J.L., Morisato, T., Hughes, T. Giesen, D., Goose, J., “High-Throughput Molecular Dynamics Simulations and Validation of Thermophysical Properties of Polymers for Various Applications”. ACS Applied Polymer Materials 2020, accepted for publication [https://doi.org/10.1021/acsapm.0c00524] 2. [2] Avar G. et. al., “Polymer for a Sustainable Environment and Green Energy” in Polymer Science: A Comprehensive Reference. Ed. Krzysztof Matyjaszewski and Martin Möller. Vol 10. Elsevier Science. 2012. 3. [3] Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1, (2013). [http://dx.doi.org/10.1063/1.4812323] 4. [4] Li, C. & Strachan, A. “Molecular scale simulations on thermoset polymers: A review”. J. Polym. Sci. Part B Polym. Phys. 53, (2015) 103–122. [10.1002/polb.23489] 5. [5] Binder, Kurt, ed. Monte Carlo and molecular dynamics simulations in polymer science. Oxford University Press, 1995. [Include DOI for which one exists] 6. [6] Materials Science Suite 2020-4, Schrödinger, LLC, New York, NY, 2020. [Include DOI for which one exists] 7. [7] Harder, Edward, et al. "OPLS3: a force field providing broad coverage of drug-like small molecules and proteins." Journal of chemical theory and computation 12.1 (2015) 281-296. [10.1021/acs.jctc.5b00864] 8. [8] Schrödinger Release 2020-4: Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2020. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2020. [Include DOI for which one exists] 9. [9] Sonnenschein Mark F., “Polyurethanes. Science, Technology, Markets and Trends.” Wiley, 2014. [Include DOI for which one exists] 10. [10] Sanders J.M., Estridge C.E., Jackson M.B., Mustard T.J.L., Tucker S.J., Giesen D.J., Christensen S., Browning A.R., and Halls M.D., “Computational method for simulating thermoset polymer curing and prediction of thermophysical properties”, (2020) ChemRxiv. Preprint. [ https://doi.org/10.26434/chemrxiv.12453989.v1] 11. [11] PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 7570, 4,4'-Diphenylmethane diisocyanate; [cited 2021 Jan. 21]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/4_4_-Diphenylmethane-diisocyanate 12. [12] PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 169132, Isophorone diisocyanate; [cited 2021 Jan. 21]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Isophorone-diisocyanate 13. [13] PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 13192, Hexamethylene diisocyanate; [cited 2021 Jan. 22]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Hexamethylene-diisocyanate 14. [14] PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 174, 1,2-Ethanediol; [cited 2021 Jan. 21]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/1_2-Ethanediol 15. [15] PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 8113, Diethanolamine; [cited 2021 Jan. 21]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Diethanolamine 16. [16] Patrone, Paul N., Dienstfrey, A., Browning, A. R., Tucker, S., Christensen, S., "Uncertainty quantification in molecular dynamics studies of the glass transition temperature." Polymer 87 (2016) 246-259. [https://doi.org/10.1016/j.polymer.2016.01.074] 17. [17] Rigby, David, and Ryong‐Joon Roe. "Molecular dynamics simulation of polymer liquid and glass. I. Glass transition." The Journal of chemical physics 87.12 (1987): 7285-7292. [https://doi.org/10.1063/1.453321]
Conference: SAMPE NEXUS 2021
Publication Date: 2021/06/29
SKU: TP21-0000000532
Pages: 12
Price: FREE
Get This Paper